顯示具有 GPU 標籤的文章。 顯示所有文章
顯示具有 GPU 標籤的文章。 顯示所有文章

2016年7月20日 星期三

Install Nvidia driver with dkms may help you

DKMS is Dynamic Kernel Module Support, which can help you when you upgrade your kernel with the out come modules.

To install Nvidia Graphic Card driver with DKMS support, install DKMS first.
$ sudo apt-get install dkms
Then install the driver, take NVIDIA-Linux-x86_64-367.35.run for example
$ chmod +x  NVIDIA-Linux-x86_64-367.35.run
$ sudo sh NVIDIA-Linux-x86_64-367.35.run --dkms
When the installation finish
$ dkms status
You can find  "nvidia, 367.35, 3.19.0-64-generic, x86_64: installed".
And you can build all modules for current kernel by
$ dkms autoinstall
And for a specifi kernel by
$ dkms autoinstall -k 4.4.15 
Or install a module for all kernels
$ dkms install -m nvidia -v 367.35 --all

Reference  https://wiki.archlinux.org/index.php/Dynamic_Kernel_Module_Support

2016年7月13日 星期三

Tensorflow's docker image with gpu supported doesn't work

Nvidia driver要先裝好
https://github.com/NVIDIA/nvidia-docker/wiki/Installation

先裝docker-engine
https://docs.docker.com/engine/installation/
 再裝nvidia-docker
https://github.com/NVIDIA/nvidia-docker
使用Tensorflow Docker image(注1)
$ nvidia-docker pull gcr.io/tensorflow/tensorflow:latest-gpu
$ nvidia-docker run -it gcr.io/tensorflow/tensorflow:latest-gpu sh -c 'python -m tensorflow.models.image.mnist.convolutional'
結果 not find libcudnn.so

離開 container (Ctrl+D)

進入 container,使用bash
 $ nvidia-docker run -it gcr.io/tensorflow/tensorflow:latest-gpu bash
 連結
$ ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.4 /usr/lib/x86_64-linux-gnu/libcudnn.so
Run again
$ python -m tensorflow.models.image.mnist.convolutional
結果
https://www.tensorflow.org/versions/r0.9/get_started/os_setup.html#docker-installation 
注1: If cannot connect to the Docker daemon. Is the docker daemon running on this host?
http://stackoverflow.com/questions/33562109/docker-command-cant-connect-to-docker-daemon